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Globally stable model reference adaptive control based on fuzzy
description of the plant

S. BlaZÏ ICÏ *, I. SÏ krjanc and D. Matko

A novel fuzzy adaptive control algorithm is presented that belongs to direct model
reference adaptive techniques based on a fuzzy (Takagi±Sugeno) model of the plant.
The global stability of the overall system is proven, namely all the signals in the system
remain bounded while the tracking error and estimated parameters converge to some
residual set that depends on the size of disturbance and high-order parasitic dynamics.
The hallmarks of the approach are its simplicity and transparency. The proposed
algorithm is a straightforward extension of classical model reference adaptive control
(MRAC) with a robust adaptive law to nonlinear systems described by fuzzy models.
The performance of the approach was tested on a simulated plant and compared with
the performance of a PI controller and a classical MRAC.

1. Introduction

Model reference adaptive techniques became very
popular in the 1960s and 1970s due to global stability
that was guaranteed by the Lyapunov redesign (e.g.
Monopoli 1974, Narendra et al. 1980) of the earlier
gradient adaptation methods. However, those adaptive

methods never went beyond the theory of the academic
literature. As recognized in the 1980s, their main draw-
back was sensitivity to unmodelled dynamics and dis-
turbances (Rohrs et al. 1985). Robust adaptive

controllers (e.g. Ioannou and Datta 1991, Ioannou
and Sun 1996) overcome this drawback, but practical
applications still seem to be missing.

In our opinion, the main reason for the lack of prac-
tical applications is the nonlinearity of real plants.
Classical adaptive systems (in this paper, adaptive sys-
tems for LTI plants that were developed by the end of

the 1970s, e.g. Narendra et al. 1980, are referred to as
classical) can adjust their parameters to di� erent oper-
ating points but this procedure takes some time, and if
the operating conditions change frequently, the adaptive

system is unable to track them. Besides, from a theore-
tical viewpoint, the unknown plant parameters are

assumed to be constant, so the application of such adap-

tive systems to plants with time-varying parameters is
questionable. On the other hand, if the nonlinearity of

the plant is included into the unmodelled part of the
linear plant, catered for by the robustness properties

of the controller, the performance of the closed-loop
system becomes poor and all advantages of the adaptive

controllers over classical ®xed-gain robust controllers
are lost.

Classical adaptive control was extended in the 1980s

and the 1990s to the time-varying (Tsakalis and Ioannou
1987) and nonlinear plants (KrsticÂ et al. 1995). Since we

restricted our attention mainly to nonlinear plants that
were more or less time-invariant, the former approaches

were not so relevant even though they produced better
results than classical adaptive control. The main draw-

back of adaptive control algorithms for nonlinear plants
is that they demand fairly good knowledge of mathe-

matics and are thus avoided by practising engineers.
In the last decade fuzzy controllers have proven them-

selves capable of coping with plant nonlinearities, not
only theoretically, but also by practical applications

(SÏ krjanc and Matko 2000). Much e� ort has been put
to fuzzy gain-scheduling (Tzafestas et al. 2001). Many

di� erent approaches to neuro-fuzzy adaptive control

have also been reported. Jagannathan et al. (1994) stu-
died the tracking performance of model reference adap-

tive control (MRAC) using multilayer neural networks
based on a Lyapunov stability approach. SÏ krjanc et al.

(1997) and SÏ krjanc and Matko (1997) proposed an
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indirect fuzzy adaptive control algorithm. Wang (1993)
and Spooner and Passino (1996) presented stable adap-
tive fuzzy control for nonlinear plants. Hu and Lu
(1998) proposed the adaptive observer and the nonlinear
controller which are based on neural networks. The
fuzzy learning approach is quite common in mobile
robot motion control where Rigatos et al. (2000) pro-
posed the approach with fuzzy membership functions
being adapted. The sliding-mode fuzzy-logic controller
was realized as a fuzzy learning automaton by Rigatos et
al. (2001).

The main drawback of fuzzy (adaptive) controllers is
the lack of theoretical background about the closed-loop
stability. An attempt to join the stability issues of model
reference adaptive systems with the capability of fuzzy
systems to cope with nonlinear plants is given in the
present paper. The direct fuzzy model reference adaptive
control (DFMRAC) algorithm is introduced. The model
of the plant is given in the simple fuzzy form (Takagi
and Sugeno 1985). The main idea of the approach is
fuzzi®cation of estimated parameters (control gains)
resulting in the control and the adaptive laws that very
much resemble the classical MRAC. The resulting equa-
tions are very simple since the plant is assumed to be
predominantly of the ®rst order (but nonlinear), while
the parasitic high-order dynamics are included in the
non-modelled part and do not cause instability due to
the robust adaptive law. In our opinion such restriction
is not too stringent since plants that belong to this class
occur quite often in process industries. Note that good
results are still obtained even in the case where parasitic
dynamics are not neglectable.

The stability of the DFMRAC is examined thor-
oughly in the framework proposed by Ioannou and
Sun (1996). The boundedness of estimated parameters,
the tracking error and all the signals in the system are
proven as well as the convergence of the tracking error
and estimated parameters to some residual set that
depends on the size of the disturbance and the parasitic
dynamics.

The paper is organized as follows. In Section 2, the
class of plants that will be discussed is presented. In
Section 3, the description of the proposed algorithm is
given. The performance of the algorithm is tested on a
simulated plant in Section 4. The conclusions are pre-
sented in Section 5. In the appendices the proofs of the
important theorems are given together with the neces-
sary background.

2. Class of plants taken into account

In the literature there are many approaches to nonlinear
system identi®cation. Among them identi®cation by the
use of fuzzy models is quite common. Since our aim was
to use simple algorithms, the Takagi±Sugeno model was

chosen to describe the plant behaviour (Takagi and
Sugeno 1985). If the ®rst-order plant is assumed and
the nonlinearity of the plant depends on two measurable
quantities, z1 and z2, the model is described by k if-then
rules of the following form:

if z1 is Aia
and z2 is Bib

then _yyp ˆ ¡aiyp ‡ biu

ia ˆ 1; . . . ; na; ib ˆ 1; . . . ; nb; i ˆ 1; . . . ; k;
…1†

where u and yp are the input and the output of the plant,
respectively, Aia

and Bib
are fuzzy membership func-

tions, and ai and bi are the plant parameters in the i-
th fuzzy domain. The antecedent variables that de®ne in
which fuzzy domain the system is currently situated are
denoted by z1 and z2 (actually, there can be only one
such variable and there can also be more, but this does
not a� ect the approach described here). There are na and
nb membership functions for the ®rst and the second
antecedent variable, respectively. The product
k ˆ na £ nb de®nes the number of fuzzy rules. The mem-
bership functions have to cover the whole operating area
of the system. The output of the Takagi±Sugeno model
is then given by the following equation:

_yyp ˆ
Pk

iˆ1…­ 0
i … } †…¡aiyp ‡ biu††
Pk

iˆ1 ­ 0
i … } †

; …2†

where } is the vector of antecedent variables zi. The
degree of ful®lment ­ 0

i … } † is obtained using T-norm,
which in this case is a simple algebraic product of mem-
bership functions:

­ 0
i … } † ˆ T…·Aia

…z1†; ·Bib
…z2†† ˆ ·Aia

…z1† ¢ ·Bib
…z2†; …3†

where ·Aia
…z1† and ·Bib

…z2† are degrees of ful®lment of
the corresponding membership functions. The degrees
of ful®lment for the whole set of rules can be written
in the compact form

b0 ˆ ‰­ 0
1 ­ 0

2 . . . ­ 0
kŠT …4†

and given in normalized form as

b ˆ b0

Pk
iˆ1 ­ 0

i

: …5†

Owing to (2) and (5), the ®rst-order plant can be
modelled in fuzzy form as

_yyp ˆ ¡…bTa†yp ‡ …bTb†u; …6†

where

a ˆ ‰a1 a2 ¢ ¢ ¢ akŠT and b ˆ ‰b1 b2 ¢ ¢ ¢ bkŠT

are vectors of unknown plant parameters in respective
fuzzy domains.

To assume that the controlled system is of the ®rst
order is quite a huge idealization; therefore, parasitic
dynamics are included in the model of the plant. A

996 S. BlazÏicÏ et al.



linear time-invariant system of the ®rst order with stable
factor plant perturbations is described by the following
equation:

yp…s† ˆ

b

s ‡ c
‡ ¢1…s†

s ‡ a

s ‡ c
‡ ¢2…s†

u…s†; …7†

where
b

s ‡ a
is the transfer function of the nominal system,

c is a positive constant, ¢1…s† and ¢2…s† are stable transfer
functions (Vidyasagar 1993), and u…s† and yp…s† are the
Laplace transforms of the plant’s input and output,
respectively. By multiplying numerator and denomi-
nator of (7) by …s ‡ c† the following is obtained:

yp…s† ˆ b ‡ ¢ 0
u…s†

s ‡ a ‡ ¢ 0
y…s†

u…s†; …8†

where the de®nition of ¢ 0
u…s† and ¢ 0

y…s† follows directly.
Since a and b in (8) are not known, they can be found
such that ¢ 0

u…s† and ¢ 0
y…s† are de®nitely strictly proper

transfer functions (if they are only biproper, a solution
with di� erent a, b, ¢ 0

u…s† and ¢ 0
y…s† can always be found

such that ¢ 0
u…s† and ¢ 0

y…s† are strictly proper and (8) still
holds). The equation (8) can be rewritten as

syp ˆ ¡ayp ‡ bu ¡ ¢ 0
y…s†yp ‡ ¢ 0

u…s†u: …9†

By taking into account the fuzzy model of the plant
(6), the ®rst two terms in (9) that apply to linear systems
are replaced and the plant model becomes:

_yyp ˆ ¡…bTa†yp ‡ …bTb†u ¡ ¢ 0
y…p†yp ‡ ¢ 0

u…p†u; …10†

where p is a di� erential operator d=dt, while ¢ 0
y…p† and

¢ 0
u…p† are linear operators in the time domain that are

equivalent to transfer functions ¢ 0
y…s† and ¢ 0

u…s†. It is
assumed that the plant is also disturbed by an external
disturbance and the ®nal model of the plant used in this
paper is obtained by adding the disturbance d 0 to (10):

_yyp ˆ ¡…bTa†yp ‡ …bTb†u ¡ ¢ 0
y…p†yp ‡ ¢ 0

u…p†u ‡ d 0:

…11†

Assumptions on the plant model (11):

A1. Absolute values of the elements of vector b are
bounded from below and from above:
bmin < bij j < bmax, i ˆ 1; 2; . . . ; k and bmin and bmax

are some positive constants.
A2. Absolute values of the elements of vector a are

bounded from above: aij j < amax, i ˆ 1; 2; . . . ; k
and amax is a positive constant.

A3. Signs of the elements in vector b are the same.

If some bi approached 0, the system would become
almost uncontrollable in that operating point. We know
that uncontrollability is not easily circumvented in any
type of control, especially not in adaptive control; there-

fore the ®rst part of A1 (`bounded from below’ part) has
to hold. The same goes for the consequences of violation
of the assumption A3, namely some operating points
(characterized by b) would exist where the gain of the
linearized plant bTb was 0 if the elements in b were not
of the same sign. Also, the gain of the linearized plant
would be positive in some operating points and negative
in others. The control of such a plant would always be a
problem and our attention is not directed to plants of a
kind. Although fuzzy models can be regarded as uni-
versal approximators, only arbitrary small modelling
errors are attainable in general. That is why too large
elements of a or b would cause large modelling errors
(the second part of A1Ð`bounded from above’ partÐ
and A2 have to hold).

It is worth mentioning that only dominant plant
dynamics are assumed nonlinear while parasitic
dynamics are linear. This is not a too unrealistic
assumption since only the upper bound on the certain
norms of the unmodelled dynamics are used in the the-
orem given later. If the nonlinearity of the unmodelled
dynamics is not too obvious, the proposed plant model
is su� cient and it can be used in quite a broad spectre of
real plants, especially in process industries where ®rst-
order nonlinear systems are quite common.

The prerequisite for using model (11) is that we know
what system variables the nonlinearity depends upon,
i.e. what signals (z1 and z2 in this section) in¯uence the
calculation of b. The choice of these, so called fuzzi®ca-
tion or antecedent variables, depends on the plant beha-
viour and is a similar problem to that of structural
identi®cation (Takagi and Sugeno 1985) in the case of
Takagi±Sugeno model. In Takagi and Sugeno (1985) it
was proposed that these variables were the system input
and output. Since the realization of the control is not
possible if b depends on u, b has to be calculated by the
use of yp and/or some other signal(s) that might be
correlated with the change of the system dynamics.
Since the choice of fuzzi®cation variables does not in¯u-
ence the form of the model (11) and the algorithm pro-
posed below, it will not be addressed here.

3. Proposed direct fuzzy model reference adaptive
control algorithm

The model of the plant was described above. The ®rst
two terms on the right-hand side of (11) will serve as a
model for control design while the other terms will be
catered for by the robustness properties of the adaptive
and control laws since they are unknown in advance.
Note that a and b are also unknown. To overcome
this di� culty adaptive control will be used.

The question still remains whether to use direct or
indirect adaptive scheme. Both approaches have advan-
tages and disadvantages that are well known and docu-
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mented for adaptive control of LTI plants (e.g. Ioannou
and Sun 1996). Since it is our belief that it is much
harder to prove the global stability in the latter case,
direct adaptive control was used in our approach, i.e.
control parameters were estimated directly by using
measurable signals. The task of this section is to ®nd
the control and adaptive laws that suit the design objec-
tive.

It was mentioned that the proposed approach to fuzzy
adaptive control resembles very much the classical
MRAC. Since our attention is focused on plants that
are dominantly of the ®rst order, MRAC of the ®rst-
order LTI plant will be recalled ®rst. Later on, the con-
trol algorithm will be extended to nonlinear plants of the
®rst order with high-order parasitics.

3.1. MRAC of LTI plants

Let us brie¯y recall the classical approach to MRAC
of the ®rst-order linear time invariant system. The
approach described below is based on Lyapunov
theory and can be found in most textbooks on adaptive
control (e.g. AÊ stoÈ m and Wittenmark 1995).

The LTI plant of the ®rst order can be described by
the di� erential equation

_yyp ˆ ¡ayp ‡ bu; …12†

where u and yp are the input and output of the plant,
respectively, while a and b are unknown constants. By
choosing reference model

_yym ˆ ¡amym ‡ bmw …13†

a control law

u ˆ fw ¡ qyp …14†

follows to achieve the design objective where w is the
reference signal. The classical solution to ®nd the correct
values for control parameters f and q is to estimate them
by the following adaptive law:

_ff ˆ ¡®f sgn…b†ew

_qq ˆ ®q sgn…b†eyp;
…15†

where e is the tracking error, de®ned as the di� erence
between yp and ym, while ®f and ®q are arbitrary positive
constants, usually referred to as adaptive gains.

As shown by Rohrs et al. (1985), the above approach
is not robust with respect to high-order unmodelled
dynamics and disturbances, therefore the adaptive law
or the control law or external excitation has to be
changed to achieve the robustness. As will be shown
below, our approach was to use the modi®ed adaptive
law.

3.2. DFMRAC for the class of nonlinear plants

The reason for presenting MRAC for the ®rst-order
linear plant above is that the proposed DFMRAC algo-
rithm is a straightforward extension of the former. The
latter assumes the fuzzi®cation of the forward gain f and
the feedback gain q. The fuzzi®ed gains are described by
means of fuzzy numbers f and q

fT ˆ ‰ f1 f2 ¢ ¢ ¢ fk Š

qT ˆ ‰ q1 q2 ¢ ¢ ¢ qk Š;
…16†

where k is the number of fuzzy rules as mentioned
above. The reference model is the same as in (13)

_yym ˆ ¡amym ‡ bmw: …17†

The control law is obtained by slightly extending (14),
namely scalar control gains are substituted by the vector
ones:

u ˆ …bTf†w ¡ …bTq†yp: …18†

The tracking error is the same as before

e ˆ yp ¡ ym: …19†

3.2.1. Adaptive law
The most important part of the algorithm is the adap-

tive law that can be put down in the scalar form

_ffi ˆ ¡®fibsign"w­ i ¡ ®fij"mj¸0 fi­ i i ˆ 1; 2; . . . ; k

_qqi ˆ ®qibsign"yp­ i ¡ ®qij"mj¸0qi­ i i ˆ 1; 2; . . . ; k;
…20†

or in equivalent vector form which is more suitable for
analysis due to its compactness

_ff ˆ ¡ C f bsign"wb ¡ C f "mj j¸0Fb

_qq ˆ C qbsign"ypb ¡ C q "mj j¸0Qb;
…21†

where ®fi and ®qi are positive scalar adaptive gains, " is
the error that will be de®ned below, m is a variable for
normalization to be de®ned, ¸0 is a design parameter
that determines the in¯uence of the `leakage’ (Ioannou
and Sun 1996), F ˆ diag…f†, Q ˆ diag…q†, and C f and C q

are diagonal matrices of the corresponding adaptive
gains ®fi and ®qi, respectively. If the sign of the
elements in vector b in (11) is negative, bsign is ¡1, other-
wise it is ‡1. By introducing qT 7 ‰fT qTŠ and
vT 7 ‰bTw ¡ bTypŠ, (21) can be made even more
compact

_qq ˆ ¡ C bsign"v ¡ C j"mj¸0qdb; …22†

where C is the diagonal matrix of scalar adaptive gains
and qT

d ˆ ‰FT QTŠ.
There are some remarks concerning the adaptive law

(22) that have to be mentioned. The ®rst term on the
right-hand side of (22) is equivalent to the adaptive law
(15). The second term introduces leakage, more
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speci®cally so-called e1-modi®cation (Narendra and
Annaswamy 1987). Note that instead of the product
qdb, only q is used in Narendra and Annaswamy,
where the situation was simpler since the plant was
LTI. The di� erence is seen more clearly from (20).
When the system leaves a certain operating region
(fuzzy domain), the corresponding membership function

­ i becomes 0. If ­ i was not included in the second term
on the right-hand side of (20), the system would gradu-
ally forget estimated parameter values fi and qi. When
the system returned to the operating region, it would use
the wrong parameter estimates. By including ­ i in the
second term on the right-hand side of (20) the adapta-
tion of the respective parameter freezes until ­ i is non-
zero. This di� erence makes the analysis of the properties
of adaptive law a little di� erent than the one performed
by Ioannou and Sun (1996). On the other hand, the
classical demand on the excitation of the external
signal that prevents parameter drift is relaxed a little
since some parameters are frozen at each instant and
only those that correspond to the current fuzzy domains
are potential candidates for the undesired adaptation
(parameter drift).

Note that the adaptation is not governed by the
tracking error e in (22). Instead, signal " is used which
is de®ned as

" ˆ e ¡ Gm…p†…"n2
s †; …23†

where n2
s ˆ m2 ¡ 1 and Gm…p† is the reference model

operator in the time domain.

Theorem 1: Adaptive law described by …20† …or equiva-
lently 21 or 22† guarantees boundedness of the estimated
parameter vectors f and q provided that m is designed such
that

w

m
;
yp

m
2 L1: …24†

Proof: Lyapunov-like function is chosen

Vfi ˆ 1

2®fi

f 2
i : …25†

Its derivative is:

_VVfi ˆ
1

®fi

fi
_ffi ˆ ¡bsign"wfi­ i ¡ "mj j¸0 f 2

i ­ i

ˆ ¡ "mj j¸0­ i

³
f 2
i ‡ bsign sgn …"m† w

m

1

¸0

fi

´
:

…26†

The derivative of the Lyapunov-like function (25) is
non-positive if

fij j >

­­­­bsign sgn …"m† w

m

1

¸0

­­­­̂
1

¸0

­­­­
w

m

­­­­: …27†

Since w=m 2 L1, j fij is also bounded from above (it
decreases until it reaches 1=¸0 w…t†=m…t†j†j . In a similar

manner it can be shown that qi is bounded if
yp=m 2 L1. Since the design of m is at the discretion
of the designer, it can be concluded that estimated para-
meters are bounded, i.e. f ; q 2 L1. &

3.2.2. Error model
By subtracting (17) from (11), the following equation

is obtained:

_ee ˆ ¡ame ‡ ‰…bTb†…bTf† ¡ bmŠw ¡ ‰…bTb†…bTq†

‡ …bTa† ¡ amŠyp ‡ ¢ 0
u…p†u ¡ ¢ 0

y…p†yp ‡ d 0: …28†

It is impossible to ®nd such f and q that would make
the expressions in brackets equal to zero for a general
case. This means that the perfect tracking of the refer-
ence model is not possible by any choice of the control
vectors even in the case when no parasitic dynamics or
disturbances are present. A decision has to be made
about what values for the elements of the vectors f
and q are the desired ones. Those elements will be
denoted by f *

i and q*
i. They will be obtained by

making the expressions in brackets in (28) equal to zero:

…bTb†…bTf† ¡ bm ˆ 0

…bTb†…bTq† ‡ …bTa† ¡ am ˆ 0:
…29†

As established before, a general solution for f and q in
(29) does not exist. A particular solution will be found
for the cases where only one fuzzy domain is activated.
This is done for all k fuzzy domains to obtain all f *

i ’s
and q*

i ’s. Mathematically, this is done by setting

b ˆ ‰0 ¢ ¢ ¢ 0 1 0 ¢ ¢ ¢ 0ŠT

in (29), i.e. by choosing i-th element of the vector b equal
to 1 while others are equal to 0:

bi f *
i ¡ bm ˆ 0 i ˆ 1; 2; . . . ; k;

biq*
i ‡ ai ¡ am ˆ 0 i ˆ 1; 2; . . . ; k:

…30†

This actually means that the desired control parameters
are the same as they would be if obtained in each fuzzy
domain separately. This also leads to the prefect
tracking if the plant is currently in only one fuzzy
domain (local linear model of that domain applies)
and there is no parasitic dynamics or disturbances. If
some of the above conditions are violated, some terms
on the right-hand side of (28) are non-zero. It will be
shown that these terms do not a� ect the stability of the
system.

Desired control parameters

f*T ˆ ‰ f *
1 f *

2 ¢ ¢ ¢ f *
k Š

q*T ˆ ‰q*
1 q*

2 ¢ ¢ ¢ q*
k Š

…31†

are bounded due to (30) and the assumptions A1 and
A2. The parameter errors are de®ned as:
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~ff ˆ f ¡ f*

~qq ˆ q ¡ q*:
…32†

Our wish is to change the expressions in the brackets
of (28) with new ones

…bTb†…bTf† ¡ bm ˆ b~ff Tb ‡ bm

²w

w

…bTb†…bTq† ‡ …bTa† ¡ am ˆ b~qqTb ‡ bm

²y

yp

;
…33†

where

b ˆ inf
b

bTb ˆ min
i

bi: …34†

By using (32) the ®rst equation in (33) yields:

b~ff Tb ‡ bm

²w

w
ˆ bTbfTb ¡ bm ˆ bTbf*Tb ‡ bTb~ff

T
b ¡ bm:

…35†

De®ne matrix B:

B ˆ

b1

b2

..

.

bk

2

66664

3

77775
‰b¡1

1 b¡1
2 ¢ ¢ ¢ b¡1

k Š ˆ

1
b1

b2

¢ ¢ ¢ b1

bk

b2

b1

1 ¢ ¢ ¢ b2

bk

..

. ..
. . .

.

bk

b1

bk

b2

1

2

66666666664

3

77777777775

:

…36†

Using ‰1 1 ¢ ¢ ¢ 1Šb ˆ 1 (see equation 5) and (36),
equation (35) yields:

b~ff Tb ‡ bm

²w

w
ˆ bTb~ff Tb ‡ bTbmBb ¡ bm‰1 1 ¢ ¢ ¢ 1Š

£ b ˆ bTb~ff Tb ‡ bmfbTB ¡ ‰1 1 ¢ ¢ ¢ 1Šgb:

…37†

The expression in the curly brackets is denoted by ¹T.
Since 0 µ ­ i µ 1 it follows:

min
j

bj

bi

¡ 1 µ ¹i µ max
j

bj

bi

¡ 1

min
j

bj ¡ bi

bi

µ ¹i µ max
j

bj ¡ bi

bi

j¹Tbj µ
max

i; j
jbj ¡ bij

min
i

jbij
< C1

…38†

due to Assumption A1 where C1 is a constant. Error ²w

can be deduced from (37)

²w…t† ˆ bT…t†b ¡ b

bm

~ff T…t†b…t†w…t† ‡ ¹T…t†b…t†w…t†

ˆ fw…t†w…t†;
…39†

where fw…t† was introduced. Since bTb (gain of the
plant), ¹Tb and ~ff are bounded (see Assumption A1
and Theorem 1), j fwj is always bounded, and it follows

j²w…t†j µ jw…t†j sup
t

fwj j ˆ ·ffwjw…t†j: …40†

If the gain of the controlled plant does not depend very
much on the antecedent variables (elements of the vector
b are similar), …bTb ¡ b† and ¹Tb tend to zero and con-
secutively do ·ffw and ²w.

It follows from the second equation in (33)

²y ˆ
µ

…bTb†…bTq†
bm

‡ …bTa†
bm

¡ am

bm

¡ b~qqTb

bm

¶
yp: …41†

It will be shown below that the function in the
brackets in (41) is bounded. Let us look at the ®rst
term in the brackets of (41)

…bTb†…bTq†
bm

ˆ bTbq*Tb

bm

‡ bTb~qqTb

bm

ˆ bT am

bm

B ¡
1

bm

a1 a2

b1

b2

¢ ¢ ¢ ak

b1

bk

a1

b2

b1

a2 ¢ ¢ ¢ ak

b2

bk

..

. ..
. . .

.

a1

bk

b1

a2

bk

b2

ak

2

666666666664

3

777777777775

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

£ b ‡ bTb~qqTb

bm

: …42†

The matrix in the brackets will be denoted by A in the
following. Equation (41) can be rewritten as

²y ˆ
µ
bT

³
am

bm

B ¡
1

bm

A

´
b ‡

bTb~qqTb

bm

‡ …bTa†
bm

¡ am

bm

¡ b~qqTb

bm

¶
yp

ˆ am

bm

…bTB ¡ ‰1 1 ¢ ¢ ¢ 1Š†byp

¡ 1

bm

fbTA ¡ aTgbyp ‡ bTb ¡ b

bm

~qqTbyp:

…43†

The expression in the parentheses in the ®rst term is
equal to ¹T, while the expression in the curly brackets
is denoted by xT. Since 0 µ ­ i µ 1, the i-th element of
the vector x can be bounded from above and below:

min
j

ai

bj ¡ bi

bi

µ Ài µ max
j

ai

_bj ¡ bi

bi

bj ¡ bi

bi

jxTbj µ max
i

ai

max
i; j

bi ¡ bj

­­ ­­

min
i

bi

< C2

…44†
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due to Assumptions A1 and A2 where C2 is a constant.
Finally ²y can be expressed as:

²y ˆ
am

bm

¹Tbyp ¡
1

bm

xTbyp ‡
bTb ¡ b

bm

~qqTbyp ˆ fyyp:

…45†

It can be seen from (45) that the introduced fy is a
function of time. For our purposes only the upper
bound on j fy…t†j is important. Since n Tb, xTb, ~qq (see
Theorem 1) and …bTb ¡ b†=bm are bounded, it follows

j²y…t†j µ jyp…t†j sup
t

j fy…t†j ˆ ·ffyjyp…t†j: …46†

According to (45), ·ffy illustrates the nonlinearity of the
plant (or better, its gain). If the elements of the vector b
tend to a constant, ·ffy tends to 0. For linear plants or
such that the gain of the plant is independent of b, ·ffy is
zero.

Final result follows from (28) and (33):

_ee ˆ ¡ame ‡ bm

³
b

bm

~ffTbw ¡ b

bm

~qqTbyp ‡ ²w ¡ ²y

´

‡ ¢ 0
u…p†u ¡ ¢ 0

y…p†yp ‡ d 0

ˆ ¡ame ‡ bm

³
b

bm

~ffTbw ¡ b

bm

~qqTbyp ‡ fww ¡ fyyp

‡ ¢u…p†u ¡ ¢y…p†yp ‡ d

´
;

…47†

where the introduction of ¢u…p† and ¢y…p† is obvious.
In the following the expression in the parentheses in (47)
shall be substituted by ² to simplify the notation, i.e.

²…t† ˆ fw…t†w…t† ¡ fy…t†yp…t† ‡ ¢u…p†u…t†

¡ ¢y…p†yp…t† ‡ d…t†: …48†

The expression in (47) is the so-called error model of the
system that connects parameter vector errors with the
tracking error.

3.2.3. Boundedness and convergence of "

Theorem 2: The adaptive law described by …20†, …23†,
and m2 ˆ 1 ‡ n2

s together with error model …47† guaran-
tees:

. ";~ff; ~qq 2 L1;

. "; "ns; "m 2 S
³

²2

m2
‡ ¸2

0

´
; and

. _ff; _qq 2 S
³

²2

m2
‡ ¸2

0

´
,

if
²

m
2 L1.

The proof is given in appendix C.

3.2.4. Boundedness of all the signals in the system and
convergence of the tracking error

It remains to be solved how to design normalizing
variable m. Theorems 1 and 2 demand that

w

m
;
yp

m
;

²

m
2 L1:

According to (48) that de®nes ², we can propose the
following formula:

m2 ˆ 1 ‡ n2
s

n2
s ˆ w2 ‡ y2

p ‡ ms

_mms ˆ ¡¯0ms ‡ u2 ‡ y2
p ms…0† ˆ 0;

…49†

where ¯0 > 0 and will be discussed below.

Theorem 3: The model reference adaptive control
system, described by …18†, …20†, …23† and …49†, is globally
stable, i.e. all the signals in the system are bounded and
the tracking error has the following properties

. e 2 L1; and

. e 2 S…¢2
2 ‡ ·dd 2 ‡ ¸2

0†,

if the following conditions are satis®ed:

.
c

¬2
0

¢2
1 ‡ c

¬2
0

‡ c¢2
1 < 1;

. c¢2
2 ‡ c¸2

0 < ¯0;

. ¢u…s†, ¢y…s† and Gm…s† are analytic in Re‰sŠ ¶ ¡ ¯0

2
;

. reference signal w is continuous; and

. b is a function of continuous signals,

where

. ¢1 ˆ max…k¢u…s†k1¯0
, k¢y…s†k1¯0

‡ ·ffy†;
. ¢2 ˆ max…k¢u…s†k2¯0

; k¢y…s†k2¯0
; ·ffw; ·ffy†;

. ·dd ˆ sup
t

jd…t†j;

. ¬0 is an arbitrary constant such that ¬0 > am; and

. c are constants that depend on di� erent system para-
meters (reference model, ¯0, ¸0, and other†.

Furthermore, estimated control gains converge to the
residual set:

»
fi; qi j j fij <

1

¸0

; jqij <
1

¸0

; i ˆ 1; . . . ; k

¼
: …50†

The proof is given in appendix C.

Remark 1: In the theorem, transfer functions in the
Laplace domain are used instead of the equivalent
operators in the time domain. If the analyticity or
norms of the operators are needed, the description in
the s domain is more suitable. If the input±output rela-
tions of the system are used, the description in the time
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domain is usually used. Both notations are used inter-

changeably in the rest of the paper.

Remark 2: If the unmodelled dynamics of the plant

that are represented by ¢1 are small enough, then by

choosing ¬0 (which is not a design parameter but is

only used in the stability proof, therefore it is arbi-
trary) large enough, the ®rst condition can always be

satis®ed. The ®rst term in the second condition also

gives information about the unmodelled dynamics.

Together with the choice of the leakage parameter

¸0, the second condition represents the lower bound

on ¯0 that would still assure stable behaviour. On the

other hand, ¯0 is also limited from above with the
third condition. The dominant limitation of the third

condition is usually the condition on Gm…s† since it is

not advisable to choose the reference model `quicker’

than parasitic dynamics due to robustness issues. The

continuity of the reference signal is not so stringent as
it appears at ®rst sight. We can see from (112) that by

choosing ¬0 large enough, arbitrary large derivatives
of the reference signal are allowed. Since the adaptive

control is usually realized by a digital controller, a

reference signal that consists of square impulses can

be treated as continuous with large derivatives in

points of discontinuity.

Remark 3: The parameters fi and qi will converge to

the residual set (50) if the adaptive error " and the

ful®lment of the corresponding membership functions

­ i are non-zero. If these conditions are not satis®ed,

the parameters will be frozen. This means that the

asymptotic convergence of the parameters is not
guaranteed. On the other hand, the parameters that

may be out of the bounds (50) do not contribute to

the control signal since ­ i is explicitly present in the

control law.

Remark 4: The consequence of the second property of
Theorem 3 is that short bursts of the signals are possible

(they are quite usual in many forms of adaptive systems;

e.g. Anderson 1985) but they are of ®nite amplitude and

their duration is relatively short.

Remark 5: The convergence set (50) also represents
potential danger in the case when the plant itself is

unstable and no element of the set (50) provides stable

behaviour of the plant. But this is a known problem

of the adaptation with leakage as shown by Rey et al.

(1989). To avoid it, a controller parameterization

( f̂f1; f̂f2; . . . ; f̂fk; q̂q1; q̂q2; . . . ; q̂qk) has to be known which

assures stability of the system. Then a slightly mod-
i®ed adaptive law (20) should be used to obtain stable

system:

_ffi ˆ ¡®fibsign"w­ i ¡ ®fi j"mj¸0… fi ¡ f̂fi†­ i

i ˆ 1; 2; . . . ; k

_qqi ˆ ®qibsign"yp­ i ¡ ®qij"mj¸0…qi ¡ q̂qi†­ i

i ˆ 1; 2; . . . ; k:

…51†

Remark 6: The problem of choosing the design para-
meters C , ¸o and ¯0 is still quite open. This is an ever-
lasting problem in adaptive control. Some guidelines on
choosing ¸o and ¯0 can be obtained from the conditions
of Theorem 3. The latter does not impose any limita-
tions on adaptive gain, but it is generally known that its
choice is of crucial importance for the good performance
of the adaptive system. As always, it turns out that any
prior knowledge that is available to the designer can be
used to improve the performance or the robustness of
the over-all system.

4. Simulation example

A comparison between the proposed algorithm and the
classical MRAC with e1-modi®cation will be given by
testing them on a simulated model. A simulated plant
was chosen since it was easier to make the same oper-
ating conditions than it would be when testing on a real
plant. The model used here was the extended model of
Rohrs et al. (1985) that can be rewritten in state space
form:

_yyp ˆ ¡yp ‡ 2uf

_uuf ˆ 229x1 ¡ 30uf

_xx1 ˆ ¡uf ‡ u;

…52†

where the part of the system between the plant input u
and uf represents the parasitic dynamics, while the ®rst
equation in (52) describes the nominal plant (the one
used for control design). The plant was made nonlinear
by adding extra terms to (52). Some properties of the
original system were preserved, namely the linearized
behaviour in the nominal operating point
(u ˆ 0; yp ˆ 0) and the `relative order’ of the plant
(meaning that u and x1 do not in¯uence _yyp directly
even in the form of higher powers). The resulting
system used for simulations was:

_yyp ˆ ¡yp ‡ 2uf ‡ …¡0:5yp ‡ 0:1uf †2

‡ …¡0:6yp ‡ 0:1uf †3

_uuf ˆ 229x1 ¡ 30uf ‡ 6x2
1 ¡ 2x1uf ¡ 0:1u2

f

_xx1 ˆ ¡uf ‡ u ‡ 0:01u2 ¡ 0:01uuf ¡ 0:01u2
f :

…53†

By analysing the plant (53), it can be seen that it is
highly nonlinear. Note that the parasitic dynamics are
also nonlinear, not just the dominant part as was
assumed when deriving the control algorithm. This
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means that this example will also test the ability of the

proposed control to cope with nonlinear parasitic

dynamics. The coe� cients of the linearized system in
di� erent operating points depend on u, x1, uf and yp,
even though that only yp will be used as a fuzzi®cation

variable, which is again a violation of the basic assump-

tions, but it still produces fairly good results.
The design objective was that the output of the plant

follows the output of the reference model, i.e. the same

as used by Rohrs et al. (1985): 3=…s ‡ 3†. Three experi-

ments were conducted, one with a PI controller, one
with a classical MRAC and the last with DFMRAC.
The reference signal was the same in all cases and it

consisted of a periodic signal followed by two big
steps (the last period and the steps are shown in ®gure

1). The PI controller (and not PID) was used because the
modelled part of the plant and the reference model are

of the ®rst order and it is easy to design the PI controller
to meet the design objective.

The model of the plant in the nominal operating point
(yp ˆ 0) is 2=…s ‡ 1† yielding a PI controller with

Kp ˆ 1:5 and Ti ˆ 1. The results are shown in ®gure 1.
Since too slow a behaviour was obtained, the controller

was designed again in a di� erent operating point (yp ˆ 4
was chosen since the parameters of the plant are

`average’ there), resulting in Kp ˆ 1:5 and Ti ˆ 0:33.

The results are shown in ®gure 2, where the system is
underdamped around yp ˆ 0 and overdamped around
yp ˆ 8.

In the case of DFMRAC, yp was chosen as the fuzzi-
®cation variable. Eleven triangular membership func-
tions that were evenly distributed between ¡10 and 10
were selected. Our motivation for this choice was again
that no prior knowledge on the nonlinearity was avail-
able to the designer. If some information was available,
it could be used to improve performance. Since in the
case of a linear plant DFMRAC becomes equivalent to
a classical MRAC with e1-modi®cation, all design para-
meters are equivalent. Therefore, we used the same para-
meters in both experiments, namely ®f ˆ ®q ˆ 2,

¸0 ˆ 0:1 and ¯0 ˆ 0:5, to enable impartial comparison.
Figures 3 and 4 show the results of the classical MRAC
with e1-modi®cation: the former shows a period of
system responses after the adaptation has settled, the
latter depicts time plots of the estimated parameters.
In ®gures 5 and 6, the same signals are shown for the
proposed DFMRAC. Since f and q are vectors, all ele-
ments of the vectors are depicted.

The experiments show that the performance of the
DFMRAC is much better than the performance of the
other two approaches. Very good results are obtained in
the case of DFMRAC even though the parasitic
dynamics are nonlinear and linearized parameters
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Figure 1. The PI controller designed in yp 5 0: time plots of the

reference signal and outputs of the plant and the reference model
(upper), time plot of tracking error (middle) and time plot of the

control signal (lower).

Figure 2. PI controller designed in yp 5 4: time plots of the
reference signal and outputs of the plant and the reference

model (upper), time plot of tracking error (middle) and time

plot of the control signal (lower).



depend not only on the fuzzi®cation variable, but also

on others. The spikes in the middle ®gure in ®gure 4 are

consequences of the fact that the plant of ’relative

degree’ 3 is forced to follow the reference model of rela-

tive degree 1. Since the plant is nonlinear a decision has

to be made as to what operating point one should tune
the PI controller. The consequences of the choice in¯u-

ence the performance of the system drastically.

The drawback of DFMRAC is relatively slow conver-

gence since the parameters are only adapted when the

corresponding membership is non-zero. This drawback

can be overcome by using classical MRAC in the begin-

ning when there are no parameter estimates or the esti-

mates are bad. When the system approaches the desired
behaviour, the adaptation can switch to that proposed

by initializing all elements of vectors f and q by esti-
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Figure 3. Classical MRAC with e1-modi®cation: time plots of

the reference signal and outputs of the plant and the reference
model (upper), time plot of tracking error (middle) and time plot

of the control signal (lower).

Figure 4. Classical MRAC with e1-modi®cation: time plots of

feedforward (upper) and feedback (lower) control gains.

Figure 5. DFMRAC: time plots of the reference signal and

outputs of the plant and the reference model (upper), time plot
of tracking error (middle) and time plot of the control signal

(lower).

Figure 6. DFMRAC: time plots of feedforward (upper) and

feedback (lower) control gains.



mated scalar parameters f and q, respectively. In our
case, all the estimates were 0 in the beginning, resulting
in the fact that the controller gains were too small in the
beginning. The output of the plant was also too small
and some periods of the reference signal were needed so
that the output reached membership functions around 6
and 8. This means that for some time the corresponding
control gains were 0 since they were not adapted. The
system was in the `magic circle’ that prevented it from
reaching the desired behaviour in the beginning. Some
experiments have shown that if the reference model
output was chosen as a fuzzi®cation variable, this
start-up interval was shortened, which is understandable
since adaptation started in all fuzzy domains in the ®rst
period. When the system was moving towards the
desired behaviour, the di� erence between yp and ym as
fuzzi®cation variables did not make much di� erence.
The problem was that the approach with ym as fuzzi®ca-
tion variable did not have any background in the fuzzy
model.

5. Conclusions

A direct fuzzy adaptive control algorithm was presented
here. It was shown in Theorem 3 that the closed-loop
system is stable provided some conditions about the size
of disturbances and high-order parasitics are met. The
advantage of the proposed approach is that it is very
simple to design, but it still o� ers the advantages of
nonlinear and adaptive controllers. It was shown in
the example that good results can be obtained if a
third-order plant is treated as a ®rst-order plant. It
also proves very successful when disturbances are pre-
sent only in certain operating regions since only esti-
mates of the corresponding parameters are bad. When
the system leaves those conditions (fuzzy domains), the
perfect function of the controller is restored instantly.
The drawback of the approach is a long time of adapta-
tion which is the result of the large number of para-
meters that have to be estimated. To speed up the
adaptation, classical adaptation can be used in the
early phase, followed by fuzzy adaptation when the clas-
sical adaptation quasi-settles. Switching from the former
to the latter is very easy and does not cause any bumps.

Appendix A

Some functional analysis preliminaries are given on
norms and smallness of signals in a mean-square sense
that are used frequently throughout the paper. They are
given here for the sake of completeness. More complete
treatment can be found in textbooks on functional ana-
lysis. A very good summary needed for use in control in
general and especially in robust adaptive control is given
in Ioannou and Sun (1996).

Since most of the signals analysed here do not have
®nite Lp norms, Lpe norms are used instead. They are
de®ned as usual Lp norms but the upper limit of the
integral is t instead of in®nity. If a function has a
®nite Lpe norm we say it belongs to the Lpe set. For
stability, analysis of the proposed algorithm exponen-
tially weighted L2 norms was shown to be particularly
useful. They are de®ned as

kxtk2¯ 7

³…t

0

e¡¯…t¡½†xT…½†x…½† d½

´1=2

; …54†

where ¯ ¶ 0 is a constant. If the LTI system is given by

y ˆ H…s†u; …55†

where H…s† is a proper rational function of s that is
analytic in Re‰sŠ ¶ ¡¯=2 for some ¯ ¶ 0 and u 2 L2e

then

kytk2¯ µ kH…s†k1¯kutk2¯ ; …56†

where

kH…s†k1¯ 7 sup
!

­­­­H
³

j! ¡ ¯

2

´­­­­: …57†

Furthermore, when H…s† is strictly proper, we have

jy…t†j µ kH…s†k2¯kutk2¯ ; …58†

where

kH…s†k2¯ 7
1������
2º

p
³…1

¡1

­­­­H
³

j! ¡ ¯

2

´­­­­
2

d!

´1=2

: …59†

De®nition of smallness in mean square sense
(Ioannou and Sun 1996). Let x : 0; 1‰ † !

n; w : 0; 1‰ † ! ‡ where x 2 L2e, w 2 L1e and con-
sider the set

S…w† ˆ
»

x; w

­­­­
…t‡T

t

xT…½†x…½† d½

µ c0

…t‡T

t

w…½† d½ ‡ c1; 8t; T ¶ 0

¼
; …60†

where c0; c1 ¶ 0 are some ®nite constants. We say that x
is w -small in the mean-square sense if x 2 S…w†.

Appendix B

Some useful lemmas are given here. They are indispen-
sable since they are used repeatedly in the proofs of the
theorems. They are given here without explicit proofs.
Most are proven implicitly; the others are very simple to
prove, and therefore the proofs are omitted.

If x…t† is a vector and a…t† is a scalar or vice versa then
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k…xa†tk2¯ ˆ
³…t

0

e¡¯…t¡½†xT…½†x…½†aT…½†a…½† d½

´1=2

µ
³…t

0

e¡¯…t¡½†xT…½†x…½† d½

´1=2

£ sup
t

…aT…t†a…t††1=2 ˆ kxtk2¯ sup
t

ja…t†j:

…61†

If x…t† and a…t† are vectors then

k…xTa†tk2¯

ˆ
³ …t

0

e¡¯…t¡½†xT…½†a…½†aT…½†x…½† d½

´1=2

µ
³…t

0

e¡¯…t¡½†xT…½†¶max…a…½†aT…½††x…½† d½

´1=2

ˆ
³…t

0

e¡¯…t¡½†xT…½†x…½†ja…½†j2 d½

´1=2

ˆ k…xjaj†tk2¯ ;

…62†

where ¶max…A† denotes the largest eigenvalue of the
matrix A. The only non-zero eigenvalue of the matrix
ccT is jcj for any vector c 6ˆ 0. Combining (61) and (62)
we get

k…xTa†tk2¯ µ k…xjaj†tk2¯ µ kxtk2¯ sup
t

ja…t†j: …63†

If x…t† is a vector then the upper bound on kxtk2¯ is

kxk2¯ ˆ
³…t

0

e¡¯…t¡½†xT…½†x…½† d½

´1=2

µ
³…t

0

e¡¯…t¡½† d½

´1=2

sup
t

…xT…t†x…t††1=2

ˆ

����������������
1 ¡ e¡¯t

¯

s

sup
t

jx…t†j <
1���
¯

p sup
t

jx…t†j:

…64†

Since elements of vector b are normalized it follows

sup
t

jb…t†j ˆ sup
t

�������������������
Xk

iˆ1

­ 2
i …t†

vuut µ

�������������
Xk

iˆ1

­ i

vuut ˆ 1: …65†

If f …t†, g…t† and h…t† are scalar functions of time and
xi…t† are vector functions of time (i ˆ 1; 2; . . . ; k) then

° k… fh†tk ‡ k…gh†tk

ˆ

���������������������������������������������������������������������…t

0

e¡¯…t¡½†… f 2…½† ‡ g2…½††h2…½† d½

s

ˆ k…h
���������������
f 2 ‡ g2

q
†tk;

…66†

°

x1…t†

x2…t†

..

.

xk…t†

®®®®®®®®®®®®

®®®®®®®®®®®®

ˆ

����������������������������������������������������������������������������������������…t

0

e¡¯…t¡½†…xT
1 …t†x1…t† ‡ ¢ ¢ ¢ ‡ xT

k …t†xk…t†† d½

s

ˆ x1…t†k k ‡ ¢ ¢ ¢ ‡ xk…t†k k:

…67†

If xi …i ˆ 1; 2; . . . ; n† are real numbers then

³Xn

iˆ1

xi

´2

µ n
Xn

iˆ1

x2
i : …68†

Appendix C

The extensive proofs of Theorems 2 and 3 are given.

Both follow the general lines of the similar proofs pre-

sented by Ioannou and Sun (1996). There are, of course,

many peculiarities of fuzzy modelling that make our

proofs quite di� erent from the mentioned ones.

Proof of Theorem 2

According to the error model (47) the tracking error e

is obtained by ®ltering parameter errors and unmodelled

term by a reference model Gm

e ˆ Gm…p†
³

b

bm

~ff Tbw ¡ b

bm

~qqTbyp ‡ ²

´
: …69†

By combining (23) and (69) we get

" ˆ Gm

³
b

bm

~ff Tbw ¡ b

bm

~qqTbyp ‡ ² ¡ "n2
s

´
: …70†

A Lyapunov function is proposed

V ˆ 1
2
~ffT C ¡1

f
~ff ‡ 1

2
~qqT C ¡1

q ~qq ‡
1

2 bj j "2: …71†

The derivative of the Lyapunov function (71) is

_VV ˆ ~ffT C ¡1
f

_~ff~ff ‡ ~qqT C ¡1
q

_~qq~qq ‡ 1

jbj " _"": …72†

Since _~ff~ff ˆ _ff* and _~qq~qq ˆ _qq* it follows from (72) using (21)

and (70)
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_VV ˆ ~ffT C ¡1
f …¡ C f bsign"wb ¡ C f j"mj¸0Fb†

‡ ~qqT C ¡1
q … C qbsign"ypb ¡ C qj"mj¸0Qb†

‡
1

jbj "

³
¡ am" ‡ bm

³
b

bm

~ffTbw ¡
b

bm

~qqTbyp

¡ "n2
s ‡ ²

´´

ˆ ¡~ffTbsign"wb ¡ ~ffTj"mj¸0Fb

‡ ~qqTbsign"ypb ¡ ~qqTj"mj¸0Qb

¡ am

jbj "2 ‡ sgn…b†~ffTbw" ¡ sgn…b†~qqTbyp"

‡ bm

jbj
…¡"2n2

s ‡ "²†

ˆ ¡j"mj¸0…~ffTF ‡ ~qqTQ†b ¡ am

jbj "2

‡
bm

jbj …¡"2n2
s ‡ "²†:

…73†

The last equality follows from the assumption A3 that

all bi’s and b have the same sign, i.e. bsign.

What can be said about ¡…~ffTF ‡ ~qqTQ†b?

¡ …~ffTF ‡ ~qqTQ†b ˆ ¡
Xk

iˆ1

… ~ffi fi­ i ‡ ~qqiqi­ i†

ˆ ¡
Xk

iˆ1

… ~ffi… f *
i ‡ ~ffi†­ i ‡ ~qqi…q*

i ‡ ~qqi†­ i†

ˆ
Xk

iˆ1

…¡~ff 2
i ­ i ¡ ~qq2

i ­ i ¡ f *
i

~ffi­ i ¡ q*
i ~qqi­ i†

µ
Xk

iˆ1

…¡~ff 2
i ­ i ¡ ~qq2

i ­ i ‡ j f *
i j ¢ j ~ffij­ i ‡ jq*

i j ¢ j~qqij­ i†

µ
Xk

iˆ1

…¡~ff 2
i ­ i ¡ ~qq2

i ­ i ‡ j f *
i j ¢ j ~ffij­ i ‡ jq*

i j ¢ j~qqij­ i

‡ ­ i

2
…j ~ffij ¡ j f *

i j†2 ‡ ­ i

2
…j~qqij ¡ jq*

i j†2†

ˆ
Xk

iˆ1

³
¡ ­ i

2
~ff 2
i ¡ ­ i

2
~qq2

i ‡ ­ i

2
f *

i
2 ‡ ­ i

2
q*

i
2

´

ˆ
Xk

iˆ1

³
­ i

2
…¡ ~ffi

2 ¡ ~qq2
i ‡ f *

i
2 ‡ q*

i
2†

´

µ ¡ min

³Xk

iˆ1

³
­ i

2
… ~ffi

2 ‡ ~qq2
i †

´´

‡ max

³Xk

iˆ1

³
­ i

2
… f *

i
2 ‡ q*

i
2†

´´

ˆ 0 ‡ max
i

…1
2
… f *

i
2 ‡ q*¤

i
2††: …74†

The calculated upper bound of ¡…~ffTF ‡ ~qqTQ†b in (74)
will be denoted by q*2. Using (74) and the inequality

¡
am

jbj "2 ¡
bm

jbj "2n2
s µ ¡

min…am; bm†
jbj "2…1 ‡ n2

s †

ˆ ¡ min…am; bm†
jbj "2m2

it follows from (73):

_VV µ j"mj¸0q*2 ¡ min…am; bm†
jbj "2m2 ‡ bm

jbj "²

µ j"mj
³

¸0q*2 ¡ min…am; bm†
jbj j"mj ‡ bm

jbj
j²j
m

´
:

…75†

Since the desired control parameters ( f *
i and q*

i ) are
®nite, so is the constant q*2. The last term in the
inequality (75) is bounded by assumption of the the-
orem. The derivative of the Lyapunov function will be
de®nitely non-positive if

j"mj >
¸0jbj

min …am; bm† q*2 ‡
bm

min …am; bm†
j²j
m

: …76†

Since j"mj is positive if inequality (76) holds, _VV in (75) is
strictly negative, not just non-positive when condition
(76) is satis®ed. Because m ¶ 1 by construction it fol-
lows j"j µ j"mj and large enough j"j causes that
Lyapunov function starts decreasing. It was shown pre-
viously (see Theorem 1) that ~ff and ~qq are bounded. From
these two facts it follows:

V ; ";~ff; ~qq 2 L1: …77†

Inequality (75) can be rewritten as:

_VV µ ¡k2
1"2m2 ‡ ¸0j"mjq*2 ‡ k2

2j"mj j²j
m

µ ¡k2
1"2m2 ‡ ¸0 "mj jq*2 ‡ k2

2 "mj j
j²j
m

‡ 1

2

³
k1 "mj j ¡ 1

k1

³
k2

2

j²j
m

‡ ¸0q*2

´´2

ˆ ¡ k2
1

2
"2m2 ‡ 1

2k2
1

³
k2

2

j²j
m

‡ ¸0q*2

´2

µ ¡ k2
1

2
"2m2 ‡ 1

2k2
1

³
k2

2

j²j
m

‡ ¸0q*2

´2
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‡ 1

2k2
1

³
k2

2

j²j
m

¡ ¸0q*2

´2

ˆ ¡ k2
1

2
"2m2

‡ k4
2

k2
1

j²j2

m2
‡ 1

k2
1

¸2
0q*4; …78†

where

min…am; bm†
jbj

was substituted by k2
1 and

bm

jbj

by k2
2. Integrating both sides of the inequality (78), we

obtain
…t

t0

k2
1

2
"2m2 d½ µ

…t

t0

³
k4

2

k2
1

²2

m2
‡ 1

k2
1

¸2
0q*4

´
d½

‡ V…t0† ¡ V…t† …79†

for 8t ¶ t0 and any t0 ¶ 0. Because V 2 L1 and
m2 ˆ 1 ‡ n2

s , it follows

"; "ns; "m 2 S
³

²2

m2
‡ ¸2

0

´
; …80†

where S…¢† gives information about the mean-square of
the signals and is de®ned in appendix A.

From (21) it follows:

_ff ˆ ¡ C f "m

³
bsign

w

m
‡ sgm…"m†¸0F

´
b

_qq ˆ ¡ C q"m

³
¡ bsign

yp

m
‡ sgn…"m†¸0Q†b

…81†

and consecutively

j_ff j µ cj"mj since
w

m
; F 2 L1

j _qqj µ c "mj j since
yp

m
; Q 2 L1:

…82†

Combining (80) and (82) it follows

_ff; _qq 2 S
³

²2

m2
‡ ¸2

0

´
: &

The proof of Theorem 3

In the following k…¢†k denotes the L2¯0
norm, i.e.

k…¢†tk2¯0
.

By de®ning ~qqT 7 ‰~ffT ~qqTŠ and vT 7 ‰bTw ¡ bTypŠ,
(47) can be rewritten as

e ˆ Gm…p†
³

b

bm

~qqTv ‡ ²

´
: …83†

The normalizing signal m in (49) is equal to

m2 ˆ 1 ‡ w2 ‡ y2
p ‡ kuk2 ‡ kypk2: …84†

It will be shown that

²

m
;
k²k
m

;
u

m
;
kuk
m

;
yp

m
;
kypk

m
;
!

m
;
k!k
m

;
k _yypk

m
2 L1:

If additionally _ww 2 L1 then

k _wwk
m

2 L1:

It follows from (48) by using property (56):

k²k µ k¢uk1¯0
kuk ‡ k¢yk1¯0

kypk

‡ ·ffwkwk ‡ ·ffykypk ‡ kdk

µ 1���
¯

p … ·ffw ·ww ‡ ·dd† ‡ k¢uk1¯0
kuk

‡ …k¢yk1¯0
‡ ·ffy†kypk

µ
1���
¯

p … ·ffw ·ww ‡ ·dd† ‡ ¢1m;

…85†

where ¢1 ˆ max…k¢uk1¯0
; k¢yk1¯0

‡ ·ffy†. Similarly it
follows from (48), (58) and (68):

j²j µ k¢u…s†k2¯0
kutk2¯0

‡ k¢y…s†k2¯0
k…yp†tk2¯0

‡ ·ffwjwj ‡ ·ffyjypj ‡ ·dd

µ max…k¢u…s†k2¯0
; k¢y…s†k2¯0

; ·ffw; ·ffy†

£ …kutk2¯0
‡ k…yp†tk2¯0

‡ jwj ‡ jypj† ‡ ·dd

µ 2 max…k¢u…s†k2¯0
; k¢y…s†k2¯0

; ·ffw; ·ffy†m ‡ ·dd

ˆ 2¢2m ‡ ·dd ;

…86†

where ¢2 ˆ max…k¢u…s†k2¯0
; k¢y…s†k2¯0

; ·ffw; ·ffy†. From
(86) and (68) we have

²2 µ 8¢2
2m

2 ‡ 2 ·dd2: …87†

The boundedness of

kuk
m

;
kypk

m
and

yp

m

follows directly from (84). Using (67), (61), (65), (64)
and (84) we get

kvk ˆ k¡bwk ‡ k¡bypk µ kwk ‡ kypk µ c ·ww ‡ m: …88†

Similarly:

jxj ˆ
�������������������������������
jbwj2 ‡ j¡bypj

2
q

ˆ
������������������������������
jbj2w2 ‡ jbj2y2

p

q

µ
����������������
w2 ‡ y2

p

q
< m:

…89†

The input signal u is calculated according to the formula

u ˆ qTv: …90†
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Owing to the boundedness of the parameter vector q
that is guaranteed by the adaptive law (Theorem 1)
and (89) it can be concluded that u µ cm.

Using (83) output of the plant can be written as

yp ˆ Gm…p†
³

w ‡
b

bm

~qqTv ‡ ²

´
: …91†

The consequence of (91) is

_yyp ˆ pGm…p†
³

w ‡ b

bm

~qqTv ‡ ²

´
: …92†

From (92) it follows by using (56), (64) and (85)

k _yypk µ ksGm…s†k1¯0

³
kwk ‡ b

bm

k~qqTvk ‡ k²k
´

µ c ·ww ‡ ckvk ‡ ck²k

µ c ·ww ‡ c·ffw ·ww ‡ c ·dd ‡ c¢1m ‡ cm:

…93†

The upper bound for the norm of the vector _vv is
calculated from the norms of its elements (see equation
67)

k _vvk ˆ

d

dt
…bw†

d

dt
…¡byp†

®®®®®®®®

®®®®®®®®
ˆ k _bbw ‡ b _wwk ‡ k¡b _yyp ¡ _bbypk

µ k _bbwk ‡ kb _wwk ‡ kb _yypk ‡ k _bbypk

µ sup
t

j _bbj
³

·ww���
¯

p ‡ kypk
´

‡ sup
t

jbj
³

·_ww_ww���
¯

p ‡ k _yypk
´

µ c ·ww ‡ c ·ffw ·ww ‡ c·_ww_ww ‡ c ·dd ‡ c¢1m ‡ cm;

…94†

where ·_ww_ww ˆ sup
t

j _ww…t†j, i.e. reference signal w…t† has to be

continuous. When the membership functions depend
only on the signals that are continuous (e.g. yp and w
when the above assumption holds), ­ i; i ˆ 1; 2; . . . ; k;
are also continuous and their derivatives are ®nite all
the time, so the last inequality in (94) ®nally follows.

It follows from (91) and (85)

kypk ˆ kGm…s†k1¯0

³
kwk ‡ b

bm

k~qqTvk ‡ k²k
´

µ c ·ww ‡ ck~qqTvk ‡ c·ffw ·ww ‡ c ·dd ‡ c¢1m

…95†

and

jypj ˆ kGm…s†k2¯0

³
kwk ‡ b

bm

k~qqTwk ‡ k²k
´

µ c ·ww ‡ ck~qqTvk ‡ c·ffw ·ww ‡ c ·dd ‡ c¢1m:

…96†

From (11) it follows:

u ˆ 1

bTb
… _yyp ‡ …bTa†yp ‡ ¢ 0

y…p†yp ¡ ¢ 0
u…p†u ¡ d 0†

ˆ
³

1

bTb
pGm…p† ‡

bTa

bTb
Gm…p†

´³
w ‡

b

bm

~qqTv ‡ ²

´

‡ bm

bTb
…¢y…p†yp ¡ ¢u…p†u ¡ d†

…97†

and further:

kuk µ
³

sup
t

­­­­
1

bT…t†b

­­­­ksGm…s†k1¯0

‡ sup
t

­­­­
bT…t†a
bT…t†b

­­­­kGm…s†k1¯0

´

£
³

kwk ‡ b

bm

k~qqTvk ‡ k²k
´

‡ sup
t

­­­­
bm

bT…t†b

­­­­…k¢y…s†k1¯0
kypk

‡ k¢u…s†k1¯0
kuk ‡ kdk†

µ c ·ww ‡ c ·ffw ·ww ‡ c ·dd ‡ c¢1m ‡ ck~qqTvk:

…98†

Combining (95), (96) and (98) and using (68) the fol-
lowing inequality is obtained:

m2 ˆ 1 ‡ w2 ‡ y2
p ‡ kuk2 ‡ kypk2

µ 1 ‡ c ·ww2 ‡ c ·ff 2
w ·ww2 ‡ c ·dd2 ‡ c¢2

1m2 ‡ ck~qqTvk2:

…99†

From (70) the error " can be rewritten as

" ˆ Gm

³
b

bm

~qqTv ¡ "n2
s ‡ ²

´
: …100†

The product ~qqTv can be decomposed into

~qqTv ˆ 1

p ‡ ¬0

…~qqT _vv ‡ _~qq~qqT
v† ‡ ¬0

p ‡ ¬0

~qqTv …101†

where ¬0 is an arbitrary positive number.
We can use (100) and the fact that

Gm…s† ˆ bm

s ‡ am

further to derive from (101):

~qqTv ˆ 1

p ‡ ¬0

…~qqT _vv ‡ _~qq~qqT
v†

‡ ¬0…p ‡ am†
…p ‡ ¬0†b " ¡ ¬0bm

…p ‡ ¬0†b ² ‡ ¬0bm

…p ‡ ¬0†b
"n2

s :

…102†

The ¯-shifted norms H1 of the transfer functions
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1

s ‡ ¬0

and
s ‡ am

s ‡ ¬0

are
1

¬0 ¡ ¯=2

and 1, respectively. Since ¬0 > am > ¯=2 > 0 it follows:

1

¬0 ¡ ¯=2
<

c

¬0

: …103†

Using this the following inequality is obtained

k~qqTvk µ
c

¬0

…k~qqT _vvk ‡ k _~qq~qq
T
vk† ‡ c¬0k"k

‡ ck²k ‡ ck"n2
s k: …104†

Using (62) and(89) we get

k _~qq~qq
T
vk µ k _~qq~qqjvjk µ k _~qq~qqmk: …105†

From (63) and (94) it follows

k~qqT _vvk µ k _vvk sup
t

j~qqj

µ c ·ww ‡ c ·ffw ·ww ‡ c·_ww_ww ‡ c ·dd ‡ c¢1m ‡ cm: …106†

By inserting (105), (106) and (85) into (104) we get

k~qqTvk µ
c

¬0

k _~qq~qqmk ‡ c¬0k"k ‡ ck"n2
s k ‡

c

¬0

·ww ‡
c

¬0

·ffw ·ww

‡ c

¬0

·_ww_ww ‡ c

¬0

·dd ‡ c

¬0

¢1m ‡ c

¬0

m

‡ c·ffw ·ww ‡ c ·dd ‡ c¢1m: …107†

Since " is bounded (which is guaranteed by the adap-
tive law as shown before) and ns < m it follows

k~qqTvk µ
c

¬0

k _~qq~qqmk ‡ ck"nsmk

‡
³

c

¬0

¢1 ‡ c

¬0

‡ c¢1

´
m

‡
³

c¬0·"" ‡ c

¬0

·ww ‡ c

¬0

·ffw ·ww ‡ c

¬0

·_ww_ww

‡ c

¬0

·dd ‡ c ·ffw ·ww ‡ c ·dd

´
: …108†

Using (66) we get

c

¬0

k _~qq~qqmk ‡ ck"nsmk ˆ c

¬0

kj _~qq~qqjmk ‡ ck"nsmk µ ckgmk

…109†

where

g2 ˆ
j _~qq~qqj2

¬2
0

‡ …"ns†2:

Since

"ns;
_~qq~qq 2 S

³
²2

m2
‡ ¸2

0

´

it also holds that

g 2 S
³

²2

m2
‡ ¸2

0

´

or by using (87)

g 2 S
³

¢2
2 ‡

·dd2

m2
‡ ¸2

0

´
: …110†

If the term in the parentheses in (108) is denoted by c 0,
the inequality (108) becomes

k~qqTvk µ ckgmk ‡
³

c

¬0

¢1 ‡
c

¬0

‡ c¢1

´
m ‡ c 0:

…111†

By using (99) and (111) it follows

m2 µ 1 ‡ c ·ww2 ‡ c ·ff 2
w ·ww2 ‡ c ·dd 2 ‡ c¢2

1m2

‡ ckgmk2 ‡
³

c

¬2
0

¢2
1 ‡ c

¬2
0

‡ c¢2
1

´
m2 ‡ cc 02

µ ckgmk2 ‡
³

c

¬2
0

¢2
1 ‡

c

¬2
0

‡ c¢2
1

´
m2

‡
³

c ‡ c

¬2
0

´
·ww2 ‡

³
c ‡ c

¬2
0

´
·ff 2
w ·ww2

‡
³

c ‡
c

¬2
0

´
·dd 2 ‡ c¬2

0·"" 2 ‡
c

¬2
0

·_ww_ww2 ‡ 1: …112†

If the following condition is ful®lled

c

¬2
0

¢2
1 ‡ c

¬2
0

‡ c¢2
1 < 1 …113†

we have

m2 µ ckgmk2 ‡
³

c ‡
c

¬2
0

´
·ww2 ‡

³
c ‡

c

¬2
0

´
·ff 2
w ·ww2

‡
³

c ‡ c

¬2
0

´
·dd 2 ‡ c¬2

0·"" 2 ‡ c

¬2
0

·_ww_ww2 ‡ c: …114†

The equation (114) can be rewritten by using the de®ni-
tion of the L2¯ norm

m2…t† µ c

…t

0

e¡¯…t¡½†g2…½†m2…½† d½ ‡ K ; …115†

where the de®nition of K follows directly from (114). By
applying Bellman±Gronwall lemma to inequality (115)
we get

m2…t† µ Ke¡¯tec
„ t

0
g2…s† ds ‡ K¯

…t

0

e¡¯…t¡½†ec
„ t

½
g2…s† ds d½ :

…116†

Because of (110) the following is true

c

…t

½

g2…s† ds µ c0 ‡ c1…t ¡ ½†¢2
2 ‡ c2…t ¡ ½†

·dd 2

m2

‡ c3…t ¡ ½†¸2
0 …117†
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for 8½ > 0, 8t > ½ and some positive constants c0, c1, c2

and c3. If

c1¢2
2 ‡ c2

·dd 2

m2
‡ c3¸

2
0 µ ¯0 …118†

then it follows from (116) that m…t† is bounded. The
second term becomes arbitrary small as soon as yp…t†
(which is smaller than m…t† by design) reaches some
level that depends on the upper bound of the distur-
bance. That term can be left out and the condition
(118) then becomes

c1¢2
2 ‡ c3¸2

0 < ¯0: …119†

As indicated above, m…t† will be bounded if inequality
(119) is satis®ed and m…t† is large enough (this is true if
yp…t† is also large enough) so that

·dd 2

m2

is negligible. When m…t† falls below the critical value, the
system can temporarily become unstable but it stabilizes
as soon as (118) is ful®lled again. This phenomenon is
the well-known bursting.

Inequality (119) bounds the selection of proper ¯0 in
the adaptive law from below. On the other hand ¯0

should not be too large since some transfer functions
have to be analytical in the part of the complex plane
where

Re‰sŠ ¶ ¡ ¯0

2
:

The only task that remains unsolved is to show the
convergence of the tracking error. Owing to (23) the
tracking error equals

e ˆ " ‡ Gm…p†…"n2
s †: …120†

The input to the reference model "n2
s can be written as

a product of "ns that belongs to

S
³

¢2
2 ‡

·dd 2

m2
‡ ¸2

0

´

and ns that was shown to be bounded. Therefore it can
be concluded:

"n2
s 2 S

³
¢2

2 ‡
·dd 2

m2
‡ ¸2

0

´
: …121†

If the impulse response of the linear system H…p†
belongs to L1 then u 0 2 S…·† implies that y 0 2 S…·†
and y 0 2 L1 for any ®nite · ¶ 0 where u 0 and y 0 are
the input and the output of the systemH…p†, respectively
(Ioannou and Sun 1996). In our case the impulse
response of the reference model is bme¡amt and therefore
it belongs to L1. Using this fact and (121) it follows:

Gm…p†…"n2
s † 2 S

³
¢2

2 ‡
·dd 2

m2
‡ ¸2

0

´

Gm…p†…"n2
s † 2 L1:

…122†

It was shown previously that

" 2 S
³

¢2
2 ‡

·dd 2

m2
‡ ¸2

0

´

" 2 L1:

…123†

By combining (120), (122) and (123) we arrive to the
®nal result

e 2 S…¢2
2 ‡ ·dd 2 ‡ ¸2

0†

e 2 L1;
…124†

where it was taken into account that m is bounded.
The proof of (50) follows directly from the proof of

Theorem 1 (see equation 27) by noting that
­­­­
w

m

­­­­< 1 and

­­­­
yp

m

­­­­< 1: &
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